Systematic, RNA-interference-mediated identification of mus-101 modifier genes in Caenorhabditis elegans.

نویسندگان

  • Antonia H Holway
  • Crystal Hung
  • W Matthew Michael
چکیده

The Mus101 family of chromosomal proteins, identified initially in Drosophila, is widely conserved and has been shown to function in a variety of DNA metabolic processes. Such functions include DNA replication, DNA damage repair, postreplication repair, damage checkpoint activation, chromosome stability, and chromosome condensation. Despite its conservation and widespread involvement in chromosome biogenesis, very little is known about how Mus101 is regulated and what other proteins are required for Mus101 to exert its functions. To learn more about Mus101, we have initiated an analysis of the protein in C. elegans. Here, we show that C. elegans mus-101 is an essential gene, that it is required for DNA replication, and that it also plays an important role in the DNA damage response. Furthermore, we use RNA interference (RNAi)-mediated reverse genetics to screen for genes that modify a mus-101 partial loss-of-function RNAi phenotype. Using a systematic approach toward modifier gene discovery, we have found five chromosome I genes that modify the mus-101 RNAi phenotype, and we go on to show that one of them encodes an E3 SUMO ligase that promotes SUMO modification of MUS-101 in vitro. These results expand our understanding of MUS-101 regulation and show that genetic interactions can be uncovered using screening strategies that rely solely on RNAi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying gene function in Caenorhabditis elegans using RNA-mediated interference.

The RNA interference (RNAi) method for targeted gene silencing is widely used in Caenorhabditis elegans for large-scale functional genomic studies, analysis of limited gene sets and detailed analysis of individual gene function. The application of RNAi has identified genes that participate in various aspects of development, physiology and cell biology. In addition, RNAi has been used to identif...

متن کامل

Mechanistic insights and identification of two novel factors in the C. elegans NMD pathway.

The nonsense-mediated mRNA decay (NMD) pathway selectively degrades mRNAs harboring premature termination codons (PTCs). Seven genes (smg-1-7, for suppressor with morphological effect on genitalia) that are essential for NMD were originally identified in the nematode Caenorhabditis elegans, and orthologs of these genes have been found in several species. Whereas in humans NMD is linked to splic...

متن کامل

Uncover genetic interactions in Caenorhabditis elegans by RNA interference.

RNA-mediated interference (RNAi) has emerged recently as one of the most powerful functional genomics tools. RNAi has been particularly effective in the nematode worm C. elegans where RNAi has been used to analyse the loss-of-function phenotypes of almost all predicted genes. In this review, we illustrate how RNAi has been used to analyse gene function in C. elegans as well as pointing to some ...

متن کامل

A Genome-wide Survey and Systematic RNAi-based Characterization of Helicase-like Genes in Caenorhabditis elegans

Helicase-like proteins play a crucial role in nucleic acid- and chromatin-mediated reactions. In this study, we identified 134 helicase-like proteins in the nematode Caenorhabditis elegans and classified the proteins into 10 known subfamilies and a group of orphan genes on the basis of sequence similarity. We characterized loss-of-function phenotypes in RNA interference (RNAi)-treated animals f...

متن کامل

Identification of Nonviable Genes Affecting Touch Sensitivity in Caenorhabditis elegans Using Neuronally Enhanced Feeding RNA Interference

Caenorhabditis elegans senses gentle touch along the body via six touch receptor neurons. Although genetic screens and microarray analyses have identified several genes needed for touch sensitivity, these methods miss pleiotropic genes that are essential for the viability, movement, or fertility of the animals. We used neuronally enhanced feeding RNA interference to screen genes that cause leth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 169 3  شماره 

صفحات  -

تاریخ انتشار 2005